
Using the Strumpy Shader Editor in Unity:

Section 1: Basics

Installation → With Unity, either drag the UnityPackage into Unity, or, alternatively, select “Import
Package” from the Assets Menu inside of Unity. Place the UnityPackage into your Standard
Packages Folder (Applications/Unity/Standard Packages on OSX) to have Unity automatically
offer to include the package on forming a new project.

As of this writing, the package uses Pro-Only features for the drawing of the preview, and is
strictly limited to Unity3, as it creates surface shaders.

What does it do, exactly? → The Strumpy Shader Editor (SSE) provides a visual interface for the
creation of Shader Graphs (.sgraphs), aimed at simplifying the process of shader design and to
make it more ,“Artist accessible”- It is based on Unity3's new “Surface Shader” concept, which
allows the creation of shaders that properly interact with Unity's lighting schemes (Forward,
Deferred, and Vertex/Fixed)

However, it should not be expected to create every conceivable effect, and is unsuited for tasks
requiring advanced transformations or particularly advanced effects (Primarily those which
require loop unfolding, such as relief mapping, ray-marching, crepuscular, etc)- It is more suited
for defining how various texture maps should interact, a field in which it largely excels. It
should also not be expected to produce elegant output code, nor should it's code output be
considered proper- Rather, the code is stripped by the CG-Compiler producing largely optimal
code.

Getting Started → After the package is imported into Unity, Open the Shader Editor Window using
Window/Shader Editor. You can either doc the window into an existing set of tabs, or into the
main Unity Window- Whichever you choose, you can hit the Space key to maximize it, which
makes observing the graph layout much easier.

The default display (Fig 1-1) shows the basic layout of the editor. When launched, a new graph
is created, and the output node is placed in the upper corner. This entire upper left area is the
work area, where the graph is built. On the bottom of the work area you will find the buttons for
file operations, such as new, export, save, and load, aswell as the “Update Shader” button. The
Update Shader button will update the shader used in the preview to reflect changes in the graph-
Please be patient, it can take several seconds for it to generate all the permutations for various
lighting conditions. When a node is selected, there is an additional row of buttons along the top
left, allowing you to delete the node, or break it's connections.

Located on the bottom of the window you will find the preview- The two vertical bars on the far
left will adjust the rotation of the preview model, where clicking on the preview display will
show material settings for the display, in the same format as when you would create a material
normally.

Finally, on the right of the display, you will see the collapsable list of node blocks you can add-
I heartily recommend keeping these elements collapsed, so you can quickly find the node your
looking for, without having to thumb through a long list.

Figure 1-1: Overview

Section 2: Getting Started

Designing your first Shader → The function list can be mighty intimidating, so rather then dive
into that, let's build up a simple shader; For that, first thing we need to do is assign a shader name- To
do this, click on the Master node in the node view- Below, next to the preview you will receive a
prompt for the variables of the node, in this case the name of the shader. This is what it will be listed
under when you create a material in your scene, for example, if you filled in Custom/MyShader, you
will be able to find it in the material drop-down under that name. As soon as you start to type a valid
name, the Master Node will recolor itself grey, showing that it has no error.

Once this is done, expand the Input section in the nodes list, and add a new input of the color
type. New nodes will appear in the upper left corner of your node window, so you may end up having
to move the Master node (Click and drag it) to see your newly created node. Unwired nodes will
appear blue, indicating they are not yet connected to the graph, and thusly will be excluded from
compilation. To remedy this, let's wire the Color value to the material- Click the box on the left of the
color node (it's output) to start drawing a connection, and place it on the Albedo input of the Master
node. With this, you can now hit “Update Shader” and have the preview display reflect your new
shader- If you did things right, you will end up with a solid black preview. This is because that color
input you created defaults to a black tone, to adjust the value it's using for the display, click the preview
and adjust the color value (Fig 2-1). Rather then actually requiring the user to define a color before
being able to see the result, you can adjust the default color by clicking on the Color node you had
created, and setting the value to, say, a bright white. You should also rename the color name to
something that better expresses what your doing, such as “Color”, which is what is used by the rest of
Unity's built-in shaders to describe color (aswell as being what color-changing scripts look for!), By
using names consistent with other shaders, the artist is free to change the shader on the material without
having to reassign all of his or her references. If your going to be releasing the shaders you create with
this tool, be sure to properly name your inputs!

Figure 2-1: A adjustable color shader we just created

When naming your inputs, Unity has some specific naming conventions used in the builtin
shaders, which are as follows:

Colors:

Color – The main color, accessable by script with Material.color
SpecColor – The specular color
Emission – The emissive color
Shininess – The glossiness amount
ReflectColor – Reflection color

Textures:

MainTex – The primary texture, accessible by script with Material.mainTexture
BumpMap – The normal map texture
Cube – The reflective cubemap, as used in cubemap shaders
Illum – Illumination Map, not to be confused with Emission
ParallaxMap – Parallax map, used by parallax shaders (Expect depth from Alpha)
DecalTex – Decal texture, or secondary diffuse map

By keeping names consistent with the builtins whenever possible, you can make it easy to
quickly flip through shaders in the editor.

Texturing →
As fun as having a single colored object is, most people would agree that to liven up a game

your going to need to use texture maps. The node for a plain 2D shader is Samper2D, where for a cube-
map it is Sampler Cube, both to be found under Inputs in the node list. With SSE, most of the operators
will pass a four component vector to each-other, however, samplers require a special function to read
from them- Tex2D, or in the case of Cubemaps, TexCube.

Let's create a simple diffuse shader: Start by hitting the “New Graph” button, and again, give
the master node a name, such as MyShaders/Diffuse. With that out of the way, add your Sampler2D
node, and drag it a fair distance to the left of your master node, so we have room to build between
them. In accordance with the naming conventions, give your sampler the proper name, in this case,
MainTex. Notice that the Sampler2D has two outputs, the actual sampler, aswell as a UV parameter.
The UV is the modified texture coordinates, after the user has defined the Scale X/Y aswell as the
Offset X/Y, and as not necessarily the same for different samplers. I'll get back to this shortly, but for
now, add a new function node, Tex2D. Tex2D samples a pixel from the provided sampler, filtered
according to the texture settings from the assigned texture, as follows:

For filter mode Point, Tex2D will return the pixel it is over
For filter mode Bilinear, you only get the pixels value if you sample directly on it, otherwise

the value is interpolated between adjacent pixels
For filter mode Trilinear (which only works with power of two textures), the result will factor

adjacent pixels aswell as adjacent mipmap levels, removing hard transitions when dealing with high
anisotropy levels (best used for floor textures, or particles with broken aspect ratios)

To use Tex2D, you connect the desired sampler and the position to sample- also be sure to wire
in the UV-set you want to use for that sample. Once you have connected them, wire the Tex2D node to
the Albedo input of the master (Fig 2-2). A very large proportion of the cost of a shader is determined
by how many Tex2D nodes you have, since each one directly correlates to the graphics card reading a
value off the texture. However, there is a major hit when you have dependent-texture-reads, that is,
when one texture read is required to evaluate another texture. Graphics cards are optimized to perform
all the texture reads together, which isn't as feasible when you layer your texture reads, such as in a
distortion shader.

Figure 2-2, a simple diffuse shader

Figure 2-3 The double vision shader

Figure 2-4, the double vision shader graph

Using Operators →
Let's create another effect, known as Double Vision (Fig2-3), which is accomplished by reading

the same texture twice, with different offsets, then recombining it. This effect is mostly used on organic
surfaces, to add variance surface appearance without using additional memory on a detail map. To start,
again, create a new shader, as before, name it properly and add your sampler map (Being the main
texture, name it MainTex), and arrange it so you have a good bit of space to work in. Add two Tex2D,
and wire the sampler into both of them, but leave the UV input empty for the moment. Unlike before,
where we directly link the texture's UV-set, this time we are going to modify it; under operation in the
node list, add both an Add and Subtract operator, aswell as a float4 type input. (Fig2-4)

Float4 (known in ShaderLab as Vector, and in UnityEngine as Vector4) is a four component
input type, which we will use to input the desired offset between our textures. Give it an appropriate
name, such as Offset, and assign a default value- UV coordinates are in the [0,1] range for each texture
repeat, so try to keep the default values in the [0,1] range. Connect the Sampler's UV outputs to the first
argument of both the add and subtract nodes, and the float4 input's value to the arg2 for both. With this,
we now have created two new UV-sets offset by our input values.

The next step is to actually sample the textures, so wire the results for the Add and Subtract
blocks to the Tex2D functions you added earlier. At this point, we now have two texture reads, but the
results remain unused. If, at this point, you were to wire the texture output to the Albedo output, you
would be able to offset the texture using your new offset parameter in the material settings, however,
we need to actually combine the results. There are operators available such as min or max, however
since we want the average, the logical approach is to add the results together and divide by two. Thus,
to accomplish this, add the new operations Add and Divide, aswell as a constant float4. Add the two
Tex2D outputs, then divide by the constant, the values of which you should set to 2,2,2,2. Finally, wire
the results to the master.

At this point, it's worth noting alternatives, to help you build better graphs. SSE always swizzles
out all arguments into float4 (using a repeating scheme, that is, float is .xxxx, float2 is .xyxy, where
float3 is simply a float4 internally), relying on the compiler to strip it down to the proper sizes (which
the compiler does quite well). Because of this, you can use a float input and constant instead of float4,
and still wire everything correctly, unlike other node based editors like ShaderFX. Further, division is a
more expensive node then multiplication, so you can further optimize by multiplying by 0.5 instead of
2. There is also the Lerp Function, which combines two inputs with a given blend factor.

Section 3: Using Secondary Maps

In an attempt to further vary surfaces, we have heralded the arrival of Secondary Maps. These
include Normal, Additive, Detail, Illumination, Specular, Gloss, countless others, all aimed at
improving the visual appearance of the surface. Normal maps are of particularly common use, being a
map that encodes a value by which offset the surface normal, and is commonly used in modern lighting
schemes.

Using normal maps requires a bit more effort then one would expect, as you have to integrate
the UnpackNormal function. To set up your graph, create two samplers (MainTex and BumpMap, as per
the naming conventions). For the BumpMap sampler, set the default texture to Normal, which shall
prevent the shader from looking 'wonky' when the texture is not set in the material parameters.
Similarly, you should set diffuse maps to white, additive maps to black, aswell as illumination maps to
black- the rule of thumb is you try to make an unassigned texture have the least impact on the final
result. The UnpackNormal function will format the raw Tex2D result so it can be fed into the normal

input for the Master node. (Fig3-1/2)
(Figure 3-1) Output of the normal mapped shader

(Figure 3-2) Layout of the normal mapped shader

Next on the list of outputs is “Emission”- Emission is a function of how self-illuminating the surface is,
and is combined with the texture such to ignore current lighting. Nothing special has to be done for
illumination maps, and the simplest programs can provide a texture output directly. (Fig 3-3)

(Figure 3-3) Illumination map Graph

It is not always the case, however, that this will suffice,
and I heartily suggest either multiplying the illumination
map by the diffuse map, or atleast multiplying it by an
input color (which, by convention, would be named
Emission) (Fig 3-4/5)

Specular maps are an indicator of how reflective the surface is at any given point, and should be
expected to vary across the surface of the material, so you usually will see Specular Maps included in
most engines. Glossiness, on the other hand, is how “Sharp” the reflections should appear- a high
glossiness indicates that the surface has extremely sharp reflections, where a glossiness appears to be
slightly rough and plastic. While this can vary across a single surface, it usually is constant (use a
Range type input for these), but when combining wet/dry surfaces in a single material you may find
yourself wanting to use a full surface map.

Figure 3-4 (left): The
extended illumination
graph. 3-5 (up) Result

Alpha mapping, unlike the other modes, is generally contained in the fourth channel of another
texture. If we directly map the Tex2D RGBA result to the alpha component of master, we would end up
mapping the Red Channel (RGBA has components mapped to XYZW, so when used as a single float, it
takes the X value, or the R-channel), instead of the alpha channel like we want. To get around this, we
can use the Splat function, which takes a specific channel from the original and copies it out over the
other channels (Which the compiler will then strip any unnecessary computation from), allowing you to
use an individual specific channel. To use it, simply create the node, and select the proper splat channel,
in this case, W, then push the result to the alpha component of Master. (Fig 3-6)

(Figure 3-6) Alpha Mapping

SSE assumes that by using the alpha output,
your shader is met to be alpha blended (As opposed
to alpha-tested), an assumption you can correct by
removing the transparent queue tag from the output
shader, and adding an alpha-test declaration as
documented in the ShaderLab Docs, though for the
most part this should be unnecessary.

With all this covered, it becomes fairly simple to put
it all together (Fig 3-7), where you have multiple
texture maps being read and submitting to different
elements of the master node. Be sure to take care
with how you lay out your nodes, as it can become
extremely easy to create a tangled mess.

(Figure 3-7) Diffuse, Bump, Illumination and
Specular with glossiness slider

Appendix: Node listing

Name Function Purpose

Constants

Float Homogenous Float4 For when you need a vector (or single float)
which has all of the same component.
(Effectively a scalar)

Float4 Four Component Constant Same as float, but you can assign a different
value to each component.

One Same as float4(1,1,1,1) All values set to one, use with Subtraction for a
one – value (Invert)

Zero Same as float4(0,0,0,0) Serves no common purpose, provides
shorthand for sampling the corner texel of a
sampler2D

Functions

Abs Absolute Value For each component (Separately!), remove the
sign element. See also Saturate.

ACos Arc Cosine (1/Cos) Interpolate from [-π,π] to [-1,1] with sharp ends
and an eased center. For an sharp center and
eased ends, see Smoothstep.

All If x, y, z AND w are not equal
to zero, returns One

Good for splatmaps, to assign holes where
there is no texture.

Any If x, y, z AND/OR w are equal
to zero, returns One

Alternative for All

ASin Arc Sine (1/Sin) As ACos, except revered (positive to negative,
negative to positive)

ATan Arc Tangent (1/Tan) Angle of the input slope, however, you should
use Atan2 unless you know what your doing

ATan2 Arc Tangent with separate
inputs

As the common Atan2 function, returns the
angle formed by an input slope. Both
arguments take the X of the input vector (so
use Splat to disambiguate), Y over X notation.

Ceil Ceiling For each component, round up to the nearest
whole number. See also Floor.

Clamp Confine the value into a range Forces Arg1 to be not less then Arg2, and not
more then Arg3- If it is out of that range, it is
set to Arg2 or Arg3, respectively. See also
Saturate.

Cos Cosine Converts [-π,π] to [-1,1] with smooth ends and
sharp inner transition, periodically flipped. If
you are not using it for trigonomitry, you
probably mean to use Smoothstep.

Cross Cross Product Returns a vector perpendicular to Arg1 and
Arg2. If the inputs were not normalized, you
will need to normalize this.

Degrees Convert radians to degrees Shorthand for multiplying by a constant, see
also Radians. This should probably never be
used in an optimized shader.

Distance Distance between inputs Returns actual distance between the two input
vectors, be careful about forth dimensional
distance (If you have problems, use mask)

Dot Dot Product Primarily used as a normalized dot product, in
which it returns 1 for matching vectors, 0 for
perpendicular vectors, and -1 for opposite
vectors, with a sinusoidal falloff.

Exp Raises to the power of ten Reverse of Log- this is not the same as Pow

Exp2 Raises by a power of two Reverse of Log2

Floor Floor function For each component, round down to the nearest
whole number

Frac Fractional component For each component, returns x – floor(x)- that
is, repeats the value in the [0,1] range

Fresnel View Angle The view angle for the pixel, with an optional
normal component, to make it sensitive for
your normal maps

Length Magnitude function Length of a single component, common
misconception that this results in the brightness
of a color- For that, dot product by your
saturation constant (See Internet)

Lerp Linear Interpolation Blends Arg1 and Arg2 by Arg3, Primary
function for texture blending. It is linearlly
interpolated, so applying a ramp function or
exponent to Arg3 can be used to regulate the
falloff. See also Smoothstep.

Log Logarithm Same as Log10 (Possibly fixed in later update)

Log10 Logarithm of ten Reduce by powers of ten, reverse of Exp

Log2 Logarithm of two Reduce by powers of two, like the Exp
functions, only useful for nonlinear textures.

Mask Zero specific parts of a vector Used to strip specific components out of a
vector, important for distance and length.
Unlike Splat, which takes a single channel
across all channels, mask explicitly removes
channels.

Max Return the highest values For each component of the inputs, return the
highest value for each.

Min Return the lowest values For each component of the inputs, return the
lowest value for each

Normalize Set Length to one One of the most important components,
however be aware that SSE assumes values are
provided in float4, so mask may be necessary.

Pow Raise to a specified exponent Because colors data is generally in the [0,1]
range, you can use pow to sharpen any curve
function, for example, often specularity is
approximated with pow(cos(fresnel),64)

Radians Degrees to Radians Opposite of Degrees

Reflect Vector reflection Reflects the first vector across the normal of
the second vector, you would use this for most
envmapping shaders.

RSqrt 1/Sqrt of each component Reciprocal square root, useful as an
optimization over Sqrt where applicable,
implemented on hardware as a fast inverse
square-root (as opposed to exponential bit-
shifting, as regular square-root)

Saturate Clamp to [0,1] Used primarily to eliminate negative returns,
should always saturate before ramping.

Sign Returns representation of sign For positive values, returns 1, for negative, -1,
for zero, it will return 0, as always, this is a per
component operation

Sin Trigonometric Sine function Same as Cos but with a 50% offset, most of the
time you really mean to use Cos.

SinCos Combination of Sin and Cos Fetch both the Sine and Cosine for a given
input. This function is done automatically by
the compiler. Just ensure that your taking both
the sin and cosine from the same inputs. There
is essentially little to no cost to take the Sin or
Cos when your taking the other.

Smoothstep Smooth Interpolation Same as Lerp, with a smooth ease in/out. One
of the more commonly used functions, it is
much cheaper then using Sin, Cos, or Pow for a
ramp.

Splat Copy component across vector Isolate a single component across the vector,
maps to the .xxxx, .yyyy, .zzzz, and .wwww
swizzles. Used for splatmapping (hence name),
channel isolation, and, in combination with
Mask, custom swizzling.

Sqrt Squareroot function Often used for distance calculation or ramping,
Implemented internally as an exponential
bitshift, making it cheaper then Pow

Step Threshold Components For each component of Arg1 and Arg2, will
return 0 if <, or 1 if >, effectively thresholding
by Arg2. Used to extract masks, or in place of a
conditional check. For cards without dynamic
branching (or, in most cases, even with it) this
is used internally for conditionals.

Tan Tangent function Largely used for ramping and constraining
ramps. You shouldn't need to use this for actual
rotational math, see ATan2 and SinCos for that.

Tex2D Read from a texture Function used to read textures, reads the
assigned Sampler at the position given in UV.
See the texturing section for more information.

TexCube Reads a cube-map texture Read the value of the cubemap for the provided
direction. This is moderately more expensive
then Tex2D. See Tex2D, Reflect, and World
Reflection.

UnpackNormal Adapt normal to surfacespace Scaleshifts the normal value from a color value
of [0,1] to the proper range of [-1,1]. Because
texture maps don't store negative values, this
function adjusts the values accordingly.
Required for reading normal maps.

UVPan Selective channel addition Used in the UVPan shader example as a
custom node, adds the selected channel of input
to each of the selected UV channels. Normally
this would require Splat, Add, and Mask.

Input

Color User-Defined color Set your default such that, when unassigned, it
has minimal impact on the surface.

Cosine time The cosine of time A smoothly interpolating periodic
representation of time, used to sway surfaces,
such as water.

Float Single value input Single value, expanded to fill all components
as by splat or the swizzle .xxxx

Float4 Set four inputs values These values should be masked and splatted for
individual use.

Float2, Float3 Set two or three inputs These are not supported by Unity, use float4
instead

Range Single value input, clamped Same as Float, but displays as a slider in the
material settings, should be used to keep values
in a rational range, whereas float should be
used for things like exponents or timescales.

Sampler2D Texture2D Input See texturing section for full details

SamplerCube Cubemap Input Same as Sampler2D, but for TexCube

ScreenPosition Position on the screen Used for overlaying textures in screenspace,
aswell as effects like fading things towards the
edge of the screen (eg, vignetting)

Sin Time The sine of time Reverse period of Costime

Time Various representations of time Each component represents a different
timescale, some naturally periodic. Use splat to
filter out your desired setting.

Vertex Color Colors provided by Mesh Vertex interpolated color, using this can be a
major memory saver.

View Direction Direction of view to surface You probably are really looking for Fresnel.
This is used for effects like triplanar texture
mapping, or directionally specific coverages
(Say, semi-procedural moss growing on trees)

World Position Position in world space Can be used largely with scripting to create
effects that are dependent on global position,
such as objects appearing wet when
underwater, or to fade near a given location.

World Reflection World Reflection vector Used as the input for texCube for reflection
mapping, can also be obtained with view
direction and reflect.

Operation

Add Addition Add two inputs, performed per component

Divide Division Divide two inputs, performed per component.
Most of the time you can optimize with a
reciprocal function and Multiply instead.
Because most values are in the [0,1] range,
division as a general rule will make values
larger, you should often use this with saturate.

Multiply Multiplication Again, performed per component. See Dot for
the sum of components.

Subtract Subtraction Performed per component, use Saturate to trim
for negative values if so desired.

Missing (Not included for various reasons), mostly for people porting shaders

HSin/HCos/HTan Hyperbolic Trigonometry For almost all of you, these won't even have
any meaning. They have very specific uses,
almost none of which have anything to do with
shading.

Round Rounding Use Step with 0.5 if you really need it,
presumably it was misplaced during
development (like Lerp was)

Noise GPU-Dependent noise Can be very hardware specific, almost always
more expensive then using a noise sampler.

Matrix Functions Matrixes have not yet been implemented, you
can manually rotate textures using a SinCos
setup if you need, I've been promised these for
a later update.

Modf Split into integer and fractional Use Frac and Floor instead

Lit Compute lighting coefficients Performed by the surface shader during
compilation, you never need to worry about
lighting coefficients, use Dot if you really need
to emulate.

ldexp Multiply by a power of two Can be emulated with Exp2 easily

isnan/isinf/isfinite Check for specific domains Never in my professional life in shading have I
seen a non-academic use of these functions, if
you really insist in needing them, emulate with
any, all, saturate and step

frexp Fractional Exponential split Again, almost purely for academic use, has
very limited use in nonlinearly stored textures.
Emulate with Exp and Frac

Fmod Repeat within a given range Not sure why this one is missing, emulatable
with frac and prescaling

Determinant Matrix function Matrixes are not implemented!

Tex1D,Tex3D Alternate Lookup dimensions Tex3D isn't exposed for use in Unity, Tex1D
can be emulated with Tex2D, or, more often,
just a ramp function (Given Tex1D is just a
function map)

Tex*Proj Projected Texture lookups If you don't know what they are, don't ask for
them. Otherwise, you should know how to
emulate, though they don't really fit the style of
a node editor.

Tex*lod Pyramidal Texture Lookup Primarily used to vary sharp/blurry envmaps
from the same sampler, and is DirectX
Specific. If your using it for an anti-aliasing
context, it can be emulated with Trilinear
filtering on the texture, or Texture.MipmapBias

TexRect Rectangular lookup Officially dropped in Unity3, emulate with
Tex2D

ddx/ddy Partial derivatives How fast a given value is changing, almost all
of the time you will not need or use this, as it's
already handled by texture lookups. Used for
anti-aliasing.

Debug Declare a debugging split Does not appear to be supported by Unity, Can
be emulated by outputting the desired channel
to Emission with Albedo set to black.

